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Abstract. The ultrasonic echo back-scattered by blood fluctuates as a function of time 
delay and lateral displacement of the source-receiver. This granular echo is not due to any 
special structure in the blood on the scale observed, but probably arises from fluctuation 
scattering by the random distribution of red cells; the dimensions of the ultrasonic pulse 
determine the scale of fluctuation detected. A statistical diffraction theory is developed, and 
formulae derived for the mean relative echo envelope n, and the mean rates of fluctuation 
N ,  and N ,  of the envelope about its mean as the time delay and lateral displacement are 
varied. N, and N ,  agree reasonably with experiment, but ll is in error by a factor of thirteen; 
this discrepancy is discussed, and possible explanations suggested. 

1. Introduction 

A piezoelectric crystal, acting as a transmitter and receiver of ultrasonic waves, was 
immersed in a vessel containing blood, and quasi-monochromatic pulses emitted, each 
consisting of a small number of waves corresponding to a predominant frequency 
w/2n of 2MHz (figure l(a)). The weak echo returning from the bulk liquid, when 
displayed as a curve of sound pressure P against time t ,  showed a division of the waves 
into quasi-random ‘groups’ (figure l(b)); the duration of each group was typically about 
3-4 cycles, corresponding to a spatial extent of about 2.5 mm. The enuelope of the echo 
was also examined, by electronically rectifying the sound pressure signal and smoothing 
over a time comparable with the wave period 2n/w ; the resulting positive ‘demodulated’ 
quantity, which we call Pen,, also showed a division into groups (figure l(c)). Next the 
crystal was moved in a plane parallel to its transmitting face, to explore different 
columns of blood; the spatial variation of Pen, was recorded as a function of a two- 
dimensional displacement vector R, at fixed ?. Again quasi-random behaviour was 
observed (figure l(d)), with variation on a scale of about 10 mm. 

At first these results suggested that blood has a granular structure on the scale 
observed: however, no such structure seems to have been seen in a microscope, or 
detected by any other method (of course electromagnetic structure, as shown by a 
microscope, need not be the same as acoustical structure). The only significant known 
structure is on a much smaller scale : red blood cells (that is, corpuscles), in the form of 
biconcave discs several microns across, are densely distributed throughout the plasma 
(the white corpuscles and ‘platelets’ are negligible). The pulse echo technique could not 
possibly resolve individual corpuscles, because the sound wavelength 1 is much too 
large (if c is the speed of sound in blood, 1 = 2 nu/w = 0.75 mm). However, if the blood 
cells are randomly distributed (as seems to be the case), then this implies that the numbers 
contained in different small volumes of the same size V will not simply be given by nV, 
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Figure 1. (a) Time dependence of pressure P in incident wave; (b )  time dependence of 
pressure P in back-scattered echo ; (c) time dependence of echo envelope P,,, ; ( d )  dependence 
of P,,, on lateral displacement of source-receiver. (In (b), (c) and (d) the vertical scales are 
approximately the same.) 

where n is the overall number density, but willjuctuate about this value. In particular, 
if the linear dimensions of Vare taken approximately equal to the ultrasonic wawlength, 
or the pulse length, or the transverse dimensions of the beam, these fluctuations imply 
variations in scattering power throughout the specimen?. This suggests that the granulai 
structure of the echo as a function of t and Ro is a random noise effect, in which the 
dimensions of the ultrasonic pulse determine the scale of fluctuation detected. By 
varying the pulse length we obtain immediate support for this idea : it is found that the 
average interval between envelope maxima (figure l(c)) varies in direct proportion to 
the pulse length. This effect cannot be a consequence of smoothing in the receiving 
electronics being less effective for short pulses (where envelope maxima might be 
confused with carrier-wave maxima), because for all our pulses the ratio of w/2n to 
bandwidth exceeded 5.  

In the rest of this paper we examine further consequences of assuming that the 
echo results from fluctuation scattering, analogous to the Rayleigh-Tyndall scattering 
responsible for the blue of the sky (Van de Hulst 1957). Section 2 is theoretical ; we 
calculate the mean value (Pen") of the echo envelope returned from an assembly of 
corpuscles, and predict the 'fading rate', that is, the rate at which Pen, fluctuates about 
(Pen,) as t and R ,  are varied. This theory is applicable not just to diffraction of ultra- 
sound by blood, but describes fluctuations in the echo from any system of scatterers 
which are small in comparison with the predominant wavelength of the incident 
radiation. In 8 3 we compare the results with experiment. A detailed description of the 
apparatus and procedure, and an account of the clinical context of the experiments, 
will be given in a later publication by one of us (PA). 
t These variations could not arise from fluctuations in the orientarion of cells in a uniform distribution, because 
for such small scatterers the diffraction pattern is independent of their shape, and hence of their orientation. 
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First, however, we introduce and eliminate a red herring. The red corpuscles will 
execute a brownian motion as a result of impacts from molecules in the plasma. This 
will cause the fluctuations in scattering power continually to dissolve and re-appear 
at different places. Thus echo patterns such as those of figures l(b,c and d )  should 
gradually change. Such ‘secular’ changes do  actually occur, over times of several 
minutes, but they do  not arise from brownian motion, for a least two reasons. The first 
is theoretical : the ‘dissolving time’ t, of an observable fluctuation cannot be less than 
the time taken for a corpuscle to wander a net distance of the order of the wavelength ,I 
in its ‘random walk’ through the blood plasma. Standard theory (Reif 1965, p 567) gives 

where q is the shear viscosity of plasma, a is a typical dimension of a red corpuscle, 
T the absolute temperature and k is Boltzmann’s constant. Substitution of numerical 
values into equation (1) gives t d  > lo8 s, so that brownian motion is far too slow to 
account for the observed changes in the pattern of echo fluctuations. The second reason 
is experimental: over several hours, these changes in the echo gradually slow down; if 
brownian motion were responsible, the changes would persist forever. But why does 
the echo change with time? We conjecture that the changes are due to convection, 
which carries regions of varying scattering power through the volume being interrogated 
by the pulse. Over a period of several hours the convection currents gradually die away ; 
eventually the red blood cells settle out of the plasma, and the system loses its bulk 
homogeneity. 

2. Statistical theory of diffraction by small particles 

To describe the sound wave we use the acoustic pressure P.  This is obviously a real 
function of position and time, but the diffraction theory is more easily formulated in 
terms of a complex function P,, whose real part is P.  Both P, and P are quasimono- 
chromatic, and it is easily shown (using, for example, the method of Berry 1973, 9 2(i)) 
that the envelope function Pen, is given by 

penv = l p c l  (2) 

(a relation which always holds, irrespective of whether or not scattering has occurred). 
In the blood we set up coordinates Z perpendicular to the transmitting face of the 
crystal and R ( = x ,  y )  parallel to this face. Then the pressure PF‘(R, Z, t )  in the incident 
wave (that is, before scattering) depends on the time dependence of the pulse emerging 
from the crystal, which can be described by the dimensionless function a(t) exp( - iwt), 
and also on the shape of the wave produced by diffraction from the crystal. It turns 
out that the side lobes of the diffraction pattern can be neglected and the central lobe 
approximated by a plane wave transversely modulated by an amplitude which can be 
described by the cylindrically symmetrical dimensionless function b(R), at least in the 
region we are interested in. Thus we take 

(3) 

where k = 2n/E. = c q c ,  Po is a constant pressure amplitude which depends on the 
energy fed into the crystal, and (Ro,  0) is the position of the transducer (figure 2). We 

PFc(R, Z, ) = P,a[t-(Z/u)] exp[i(kZ-wt)]b(lR-R,I), 
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/ t h  corpuscle 0 

Figure 2. Coordinates of crystal and scatterers. The transmitting face of the crystal is 
perpendicular to the Z axis. 

see from figure l (a)  that the pulse envelope a(?) is approximately gaussian, and we shall 
see in 4 3 that the beam-width function b(R) falls off approximately exponentially. 

As Pt'  strikes each red cell at  its position r i  (=  R i Z i ,  figure 2), a scattered wave is 
excited, whose amplitude falls off linearly with distance. Eventually all these scattered 
waves reach the receiver; provided no multiple scattering occurs (see 0 3) these add up 
to give an echo P,(t, R,) of the form 

exp(2ikZJ 
P,(t,R,) = P,Ae-'"' 

zi (4) 

where the summation is over all the corpuscles, and we have neglected powers of 
J R i  - R , / / Z i  higher than the first (an approximation amply justified in the present case). 
A is the amplitude for backward scattering from a flexible object minute in comparison 
with the wavelength ; this is shown by Rschevkin (1963) to be 

where T is the (average) volume of a single corpuscle, and j ,  ij and x ,  p are the adiabatic 
bulk moduli and mass densities of red cells and blood plasma respectively. (Strictly 
speaking, k2  in equation (5) should be a mean value, since the pulse is not mono- 
chromatic, but no appreciable error arises from using 0 2 / v 2 ,  since all frequencies in the 
pulse correspond to wavelengths much greater than the size of the scatterers.) If we 
define r = 0 as the instant that the maximum of the pulse is emitted, we can use the fact 
that a(?) is a localized function to replace Z i  by its approximate value 4 2 ,  to get the 
final echo formula 

2P,A e-'"' ( 2;.) a t -2 b(lRi - R,I) exp(2ikZJ 
ut 

P,(t, R,)  = 

Now we must calculate the mean value (Pen,), and the fluctuations of Pen" about 
the mean. It is simplest to calculate the mean square modulus (lPc12) of the echo, and use 
the relation 

(pen,) = fJ~ ( IPc12>"2~  (7) 
which follows from equation (2) together with the fact that IP,l possesses a Rayleigh 
distribution because P, is a gaussian random variable (we shall justify this statement in 
the paragraph following equation (16)). Using equation (6) we obtain, for the mean 
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square echo modulus at a given time t ,  

The brackets (. . .) denote an ensemble average over all possible positions of the scat- 
terers. Let there be M red cells in the vessel, which has a volume Q large in comparison 
with the travelling pulse of ultrasound. Of the M 2  terms in the summations in equation 
(8), JV have i = j ,  while M ( M  - 1) have i # j .  Thus we require both the singlet prob- 
ability distribution, given by Pi(ri) dri, the probability that the ith corpuscle lies in a small 
volume dui centred on ri : 

dr 
R Pi(ri) dri = -, (9) 

and also the doublet probability distribution, given by P2(ri, r j )  dri drj, the probability 
that the ith corpuscle lies in a small volume dri centred on ri and the jth corpuscle lies 
in a small volume dr j  centred on rj :  

dri drj  
P2(ri, rj) dri drj  = - 0 2  Ari-rjL 

where g(ri - rj) is the pair correlation function. 
When i a n d j  are well separated, g(r, - rj) is unity, since the corpuscles are statistically 

independent, while the impossibility of interpenetration of two corpuscles means that 
g(ri-rj) is zero if Iri-rjl is less than a few microns. Now the fastest variation in the 
function to be averaged in equation (8) occurs over distances of order I ,  while g(ri - rj) 
differs from unity over regions a thousand times smaller than 1; thus to an excellent 
approximation we can write 

dr(1 -g(r)) 1 -a6(ri-rj), (1 1) s s s  g(ri - rj) = 1 - 6(ri - rj) 

where 6(ri-rj) is the Dirac delta function and a is a measure of the ‘excluded volume’ 
surrounding a corpuscle, which we shall identify more precisely in a moment. 

It is now possible to work out the averages in equation (8), and we obtain 

(IPOl’) = ( ~ ) 2 [ ( ~ - a . y $ - ” )  2Po A [1dRb2(R)J^m dZa2(t-:) 
-02 

+ N($- 11 1 dRb(R) l ym d Z  e2ikza( t -:) 1’1. 
The integral involving the oscillatory factor exp(2ikZ) is completely negligible (in fact 
we can show that its value is of order exp( -4a2m2), where m is the number of waves in 
the pulse). Only the integrals without oscillatory factors are significant, and if we define 
n = M/Q as the number density of corpuscles, we obtain, for the mean square echo 
modulus, 

(lPJ2) = ~ ( ~ ) 2 n ( l - c . t n ) 1 ~ m  0 dt a2(t)1: dR Rb2(R). 
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(Af - 1 has here been replaced by JV ; this is certainly permissible since the number of 
scatterers in the vessel is effectively infinite.) When an is unity, the reflected intensity 
given by this expression is zero. But we are dealing with fluctuation scattering, which 
can only vanish for a homogeneous medium. Thus an would be unity only when the 
whole volume of 'blood' was packed full with corpuscles. This means that we can 
identify CI with the volume z of an average corpuscle, at least for dense distributions. 

The mean value (Pen,) of the pressure envelope follows directly from equations (13) 
and (7). Experimentally we compare (Pen,> with the peak envelope PL,$ received from 
a perfect reflector placed at  Z = 4 2 .  This can easily be calculated from equations (2) 
and (3), and the resulting ratio Il is 

We shall see in 0 3 that a(t)  and b(R) can be well represented by 

where Tis a measure of the pulse length and R ,  a measure of the beam radius at Z - vt12. 
Thus l7 becomes, finally, 

U 

where A is given by equation (5). 
As t and R ,  vary, the echo envelope Pen" fluctuates about its mean value (Pen,) 

given by equations (13) and (7); these fluctuations can be seen in figures l(c and d) .  
The simplest quantities characterizing the fluctuations are two 'fading rates' N ,  and 
N R ,  defined as follows : N ,  is the mean number of crossings of Pen" through the value 
(Pen,) during unit interval of t with the crystal position R ,  held fixed. N ,  is the mean 
number of crossings of Pen, through the value (Pen,) during a unit transverse displace- 
ment of the crystal along a straight line with t held fixed. 

To  calculate N ,  and N R  we need to know the statistical distribution of the echo 
P,(t, Ro). In the present case this is gaussian random, because the echo (equation (6)) 
is the sum of a great number of statistically independent contributions. This number is 
roughly equal to the number of red blood cells in the volume instantaneously occupied 
by the sound pulse, that is, roughly 7cnR;vT - 5 x 10'. (This number would still be 
large, even if a significant amount of aggregation occurred-but see 0 4.) We therefore 
apply standard gaussian noise theory (Rice 1944, 1945, Longuet-Higgins 1956, sum- 
marized by Berry 1973) to the function P,(t,R,). This theory shows that the fading 
rates N ,  and N R ,  which refer to the envelope, may be calculated from the autocorrelation 
function C(t, R )  of the complex echo pressure P, exp(iot) (the exponential factor removes 
the non-random time factor in equation (6)). This autocorrelation function is defined 
as 
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Then N ,  and NR are given (cf equations (4.38), (4.27) and (4.19) of Berry 1973) by 

PC(0,O) 1'2 
N ,  = e-./'( - a t 2  ) 

The procedure for calculating the averages in equation (17) is precisely similar to 
that used to derive equation (13) from equation (8), and we obtain 

Tedious but elementary analysis gives 

a2c(o, 0) - J'Tm dt[da(0/dtl2 
a t 2  J T m  dt a2( t )  

- -  

d2C(0, 0) dRR[db(R)/dR]' 
JlRl2 so" dR Rb2(R) ' 

(206) - - -  

Thus the fading rates may be calculated from equations (18), provided the pulse envelope 
a(t) and the beam-width function b(R) are known. In particular, if the simple forms 
given by equations (15) are valid, we have 

0.322 
N f  =m=- T 

3. Comparison with experiment 

The formulae (21) for the fading rates N ,  and NR involve only the quantities T and R0 
characterizing the sound beam; the only role played by the blood is to provide a 
continuous spectrum of fluctuations in scattering power, producing random noise in 
the diffracted ultrasound. On the other hand, the formula (16) for the mean reflected 
relative envelope I'I does involve properties of the blood :n, U, U, p,  i j ,  x,  2 and z. 

Figure l(a) shows that the pulse envelope a(t) is slightly asymmetrical; however, 
no serious error will be made by employing equation (15a), if we use the fact that the 
standard deviation Tis the full width at  half maximum of the gaussian curve, divided by 
(8 In 2)'12 = 2.355, and realize that the full width of a(t) is easily measured. This leads 
to the value T = 0.45f0.03 ps. From equation (21a) we can calculate N , ,  and this 
quantity can also be measured directly from curves like that shown on figure l(c). 
We obtain 

(0.72f0.05) MHz (theory) 

(0.53 f0.05) MHz (experiment) 

That the beam-width function b(R) is approximately exponential is shown by 
figure 3, which is a plot of the logarithm of b2 against R. From equation (14b), R, is 
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R (mm)  

Figure 3. Logarithmic plot of measurements of square of beam-width function b2 against 
radial distance R. 

simply equal to twice the inverse slope of the best straight-line fit to figure 3. We obtain 
the value R, = (2.5k0.4)". From equation (21b) we can calculate N,, and this 
quantity can also be measured directly from curves like that shown in figure l(d). 
We obtain 

(130+_20)m-' (theory) 

(140 f 20) m- ' (experiment). 
N R ' {  

Turning now to the calculation of the mean relative echo envelope l7, we see from 
equation (16) that the back-scattering amplitude A is required. This is given by equation 
(5 ) .  For the average volume of a corpuscle we take r = (90+ 10) pm3 (Keele and Neil 
1971) while the wavenumber is k = 2n/l = 8.4"-'. The ratio of densities of red 
blood cells and plasma is easily measured to be p/p = 1.1. The ratio i/x of bulk moduli 
is given in terms of the sound velocities ij and U (in red cell material and pure plasma 
respectively) by 

We have measured E and U, and find them identical (1500 ms- ') within experimental 
error ( f 7 %). Thus A can be calculated, and we obtain 

A = ( 9 + l ) x  lo-" m. (25 )  
To calculate l7 from equation (16) we also require the corpuscle number density n ;  

according to Keele and Neil (1971), this is 5 x 10'' m-3. The volume fraction occupied 
by scatterers is thus rn = 0.45 .y an (cf equation (1 1) and the remarks following equation 
(13)). For the time delay t at which the average envelope is measured, we choose 
t = 100 ps, corresponding to a range of ot/2 = 75 mm. The experimental value of l7 
must be corrected for the finite radius R, of the face of the crystal transducer, which 
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means that instead of the peak value PZe,', received from a perfect reflector, a smaller 
average value (P$)av will in fact be measured. This is given by 

if equation (15b) is used. The value of R,  is 7.5 mm, so that (Pz\)av = 0.175 P:e,fv. After 
making this correction, we finally obtain 

(4.4k0.8) x (theory) n = {  (experiment). 
(5.9f0.2) x lo-' 

The smallness of these quantities, and of A (equation (25)), in comparison with the 
distance between corpuscles, justifies our neglect of multiple scattering in writing down 
the basic diffraction equation (4). 

4. Discussion 

Equation (22) shows that the time fading rate N , ,  as calculated from equation (21a), 
is of the same order of magnitude as the observed value, but the two numbers do not 
agree within experimental error. Equation (23) shows that the fading rate N R  for lateral 
motion, as calculated from equation (21b), does agree with experiment. These results 
suggest that the echo does indeed have the gaussian noise character that we have 
assumed. 

However, equation (27) shows that the measured value of the relative average 
pressure envelope ll exceeds that predicted from equation (16) by a factor of thirteen. 
We do not believe that this discrepancy invalidates the proposed mechanism for echo 
formation (fluctuation scattering from red blood cells), for three reasons : (i) any 
tendency of the red cells to form aggregations has been ignored; the arguments of 6 3 
show that if a fraction q of the corpuscles aggregates into 'rouleaux' of m corpuscles 
each, the value of n will increase by a factor 1 +(nq)''*. (It is thought, however, that 
such rouleaux will not commonly occur in healthy blood (Dacie and Lewis 1970)) 
(ii) Equations (16) and (5) may be cast into the form of products of dimensionless ratios 
of the lengths A, R, ,  UT, ut,  n-113 and z1l3. These various ratios vary by up to four 
orders of magnitude, so that the agreement of equations (27) within one order of magni- 
tude is not likely to be coincidental. (iii) Although our theory of diffraction from the 
blood is precise within the assumptions made, in writing equation (3) we have treated 
in a very cavalier fashion the diffraction effects resulting from the size of the transducer. 
This will certainly introduce errors into the interpretation of the echo P:e,', received 
from the perfect reflector. Unfortunately, the region of the blood most conveniently 
interrogated ( t  = 100 ps) lies in the transition region between Fresnel and Fraunhofer 
diffraction, which cannot be treated in a simple manner. 
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